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The Baker-Campbell-Hausdorff formula and the convergence 
of the Magnus expansion 
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France 
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Abstract. We show that for a wide class of dynamical systems (described by Hamiltonians 
of the form usually considered in time-dependent perturbation theory) the divergence of 
the Magnus expansion in the Schrodinger picture for large time intervals is due to pole 
singularities inherent to the Baker-Campbell-Hausdorff formula. 

1. Introduction 

It has been reported recently in the literature [1-4] that for several simple dynamical 
models the Magnus expansion of the unitary time-displacement operator U = U ( t ,  0) 
in the Schrodinger picture does not converge for time intervals larger than the natural 
periods of the systems. The purpose of the present paper is to trace down the origin 
of the divergence, and to show that the a similar result indeed holds under much more 
general conditions. 

For completeness we recall that the Magnus expansion [5] formally provides an 
exponential solution of the time-dependent Schrodinger equation 

C 
ih-U = HU U = I  at t = O  (1.1) S t  

where H = H(t) is the Hamiltonian of the system. While the existence of an exponential 
solution U = exp(i2), with i2 = i2(t,O), is ensured for some sufficiently short time 
interval, the general conditions for the convergence of the Magnus expansion are still 
under debate. Of special interest for applications are Hamiltonians of the form 

H = H,+ V ( t )  

where H, and V ( t )  are two non-commuting operators, the first of which is time- 
independent and has a known spectrum. Dynamical systems of this type are frequently 
dealt with in time-dependent perturbation theory. Salzman [2, 31 has investigated the 
convergence problem for special choices of H, and V ( t ) .  He succeeded in calculating 
directly many terms in the Magnus expansion of R in the Schrodinger picture to 
first order in V ,  from which he was able to infer the form of the general term and 
to determine the convergence radius. Recursive methods for generating higher-order 
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terms can be of great help in such calculations [6, 71. On the other hand, in a few 
cases the Magnus operator can be obtained exactly in closed form by using Lie algebra 
methods [ 5 ,  81, and it appears that the lack of convergence is related to the presence 
of poles in the t plane [9]. 

In order to understand the full significance of Salzman's results for dynami- 
cal systems of this kind it is, however, both simpler and more instructive to start 
with the interaction picture (RI), and then to build up Rs by a unitary trans- 
formation. This may be done by using a special form of the so-called Baker- 
Campbell-Hausdorff (BCH) formula, which is derived in the appendix. In Q 2 
the method is applied to two model systems previously discussed by Salzman [2, 
31 and yields closed-form expressions for the Magnus operator R, to first order 
in V .  At the same time these examples pave the road for consideration of more general 
systems. This is done in Q 3, where we show that the presence of poles in the Magnus 
operator R, occurs for any Hamiltonian of the form (1.2). Finally Q 4 contains a few 
concluding remarks. 

2. Two simple models 

In order to illustrate the virtues of our method we shall first re-examine two simple 
physical systems belonging to the class (1.2): (i) the forced harmonic oscillator (HO), 
and (ii) the driven two-level system. The Hamiltonians for these systems are respectively 

(2.1) t t H = h o a  a+Pf ( t ) ( a  + a )  

where at ,  a are the raising and lowering operators, and 

where ax, a. are Pauli matrices. Here f ( t )  contains the time dependence, P is a coupling 
constant and hw defines the internal energy scale of the system. 

Let us denote by U ,  and U ,  the time-displacement operators in the Schrodinger 
and in the interaction pictures respectively. It is readily verified that 

U ,  = exp(R0t) U ,  A, = H,/ih. (2.3) 

Introducing the associated Magnus operator in each picture, one therefore has 

The above equation may be solved by means of the BCH formula [5 ,  8, 10, 111. As 
shown in the appendix (cf (A2) and (A12)), this gives 

B t" 
n .  

X 

R, = Rot + X(-1),+{A;,R1} + o(C-2;) 
n=O 

(2.5) 

where B, are Bernoulli numbers and the symbol {. . .} represents a multiple commutator 
defined in (A3). 
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On the other hand, it is obvious that to lowest order in P one simply has Q, N QII,  
where 

R,, = L ‘ d t ’  A,( [ ’ )  A ,  = H,/ih 

is the first term in the Magnus expansion, and 

is the Hamiltonian in the interaction picture. Using (A14) one finds after a bit of 
algebra 

(2.8) RI ,  = z [ P + ( r ) a  P t + P_(t)al  

for the forced HO, and 

for the two-level system. Here 

P, = P, T iP) = dt’ f ( t ’ )  exp(i iot’) .  (2.10) Lr 
Notice that the form of the function f ( t )  has not yet been specified. 

We must now substitute (2.8) and (2.9) into (2.5). Taking into account the commu- 
tation relations satisfied by a, at and by the Pauli matrices it is easy to show that one 
has 

{f i~’ ,R, , )  = (io)‘kRII k = 0, 1,2,. . . (2.1 1) 

for both systems. Hence (2.5) can be rewritten as 

(2.12) 

The above expression allows us to calculate R, only on a restricted time interval 
because the series diverges for or > 2n. This follows simply from the fact that the 
generator function for the Bernoulli numbers, namely 

a. 
-- Z 

n! (2.13) 

has pole singularities at z = f27cNi, N # 0. Since BZk+l = 0 for k > 0, the series in 
(2.12) differs from that in (2.13) by just one term, so that it may be readily summed 
up in closed form giving 

as = Bot + $otcot ( io t )R, ,  + ;t[A,,n,,] + 0 ( p 2 ) .  (2.14) 
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More compact forms are further obtained by specialising the last formula for each 
of the systems under scrutiny. Thus for system (i) one finds 

(2.15) 

and for system (ii) equation (2.14) becomes 

where C J ~  = (a, rt ioy)/2. 
In order to recover Salzman’s results it is necessary to determine the functions P+(t) 

explicitly before expanding the right-hand sides of (2.15) and (2.16) in power seriesof 
t .  For instance, insertion of f ( t )  = t in (2.10) gives 

P, - = [(I T i o t )  exp( i io t )  - 11 / w 2  (2.17) 

and equations (2.15) and (2.16) become respectively 

(2.18) 

(2.19) 

where ~ ( z )  = cot z - l / z .  The Taylor expansion of ~ ( z ) ,  which is related to (2.13) as 
seen above, then immediately yields the expressions derived by Salzman (cf equations 
(9a), (9b), (loa), (lob) in [3]). We have checked in the same way his results for f ( t )  = t 2 .  

R, ‘U A,t + -[a,% a t2 + j((4wt)oJ 2ih 

3. The general case 

The two dynamical systems discussed in 0 2 were rather special in that H, had a 
unique characteristic frequency (equally spaced levels in the HO case). It is, however, 
easy to extend the result to more complex dynamical systems. To show how this 
works, we consider now a general Hamiltonian of type (1.2). In practice the interaction 
term usually takes the form V ( t )  = C f m ( t ) V m ,  where V, are also time-independent 
operators like H,, but this will not be assumed here. All we need are the eigenvectors 
of H, with their corresponding eigenvalues E , ,  E,, . . .. Let X be any other (possibly 
time-dependent) operator. In the basis defined by the eigenvectors of H, one has 

[H,,XIk, = (Ek - EJXk, (3.1) 

and more generally (cf (A3)) 

{H; ,X} , ,  = ( E k  - E,)‘Xk,  n = 0,1,2,. . . . (3.2) 

Notice that the diagonal matrix elements of all these commutators vanish. From (3.2) 
we get in particular 

{fi;?Q*h/ = ( - i q J ( Q l ) k l  U k l  = (Ek - E, ) / f i  (3.3) 
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which when substituted in (2.5) leads to 

For diagonal matrix elements the sum on the right-hand side of (3.4) is equal to 1, 
so that (Rs)kk z -iE,t/A + ( Q , ) k k .  In the off-diagonal case we use (2.13) to rewrite (3.4) 
as 

(3.5) 

To first order with respect to V ,  one has simply to replace R, by R,, in (3.5). By using 
(2.6) and (2.7) the matrix elements of the latter are readily found to be 

(Cl,,),, = (ih)-’ J‘ dt’ V,,(t’) exp(iw,,t’) 

Thus, unless (Cl,,),, = 0, the corresponding matrix element of the Magnus operator in 
the Schrodinger picture displays poles for wk,t = +2nN, N # 0 (in special circumstances 
some of the poles, or all of them, might be cancelled by the vanishing of the integral, 
e.g. when V ( t )  = constant). Generally speaking the convergence radius of the Magnus 
expansion will therefore be determined by the largest transition frequency for which 
VkI does not vanish. 

The results obtained in 0 2 readily follow as particular cases of this general 
statement. For the two-level system this is completely trivial. For the HO one should 

have non-zero matrix elements only between adjacent levels. 
simply recall that in the basis in which the energy is diagonal the operators a and a t 

4. Conclusions 

In the present paper we have investigated the properties of the Magnus operator as 
a function of time for a wide class of Hamiltonians. By using the BCH formula we 
were able to derive closed-form expressions for the contributions to order V to the 
matrix elements of this operator in the Schrodinger picture. The off-diagonal elements 
exhibit poles in the t plane, which explains why the Magnus expansion of Rs does not 
converge for large t .  The radius of convergence of the expansion restricted to terms of 
first order in V is explicitly determined in the general case. 

A remarkable feature of our method is that the sum which is responsible for the 
divergence factorises in a manner manifestly independent of the specific form and 
strength of the perturbation. It should be mentioned, however, that similar conver- 
gence difficulties occur for Hamiltonians which do not contain a time-independent 
‘unperturbed’ part [12]. It is obvious that the method used here does not apply in such 
cases. 

Finally it is important to notice that in some problems exponential product repre- 
sentations of U s  might offer a useful alternative to the Magnus expansion [8, 13, 141. 
A striking example is (2.4), which was our starting point. 
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Appendix. 

Given two non-commuting operators X ,  Y ,  the famous BCH theorem states that the 
operator Z defined by expX exp Y = expZ can be expressed as a sum of X ,  Y and 
their multiple commutators. To fourth order one finds 

The fifth-order terms were given by Magnus [5] (see also [ l l ] ) ,  while Richtmyer and 
Greenspan [15] extended the expansion up to order ten by using a computer. 

The general BCH expansion becomes rapidly unwieldy, but i t  is not too difficult to 
obtain explicitly all the terms which are linear in one of the operators, say Y .  The 
shortest way is to use Hausdorffs method [5 ,  111 which yields Z = X + 2, + Z ,  + , . ., 
where Z,  contains all the terms of degree n with respect to Y .  For the linear part, Z , ,  
one finds 

where B, are Bernoulli numbers (e.g. Bo = 1 ,  B - -$, B,  = B, = ... = 0) and 9 is the 
linear (adjoint) operator defined by i Y  = -YX = [ X ,  Y ] .  Hence 2 . Y  and Y k ’  are 
multiple commutators : 

‘A - 

P Y  = { X , ,  Y }  = X ,  [. . . [X Y ]  .. . I ]  + 
YlZ, = {Y ,X . }  = [[ ...[ Y , X ]  . . . I ,  X = ( -1)”PY 4 

The curly bracket symbol introduced above has the advantage of emphasising the 
commutator structure of the terms. Note also that the standard mathematical notation 
for the adjoint operator is adX rather than 8.  

An alternative derivation (which has some pedagogical value on its own) is based 
on two important results due to Goldberg [16] who investigated the formal power 
series expansion of Z .  Denoting the coefficient of the product XsI Ys2 . , . X s m ( Y s m )  for 
m odd (even) by C x ( s , ,  ... ,sm) one has according to his theorem 1 ,  
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where m' = [m/2] ,  m" = [(m - 1 ) / 2 ] ,  and the polynomials G,(t )  are defined recursively 
by 

Here we assume s,, ..., s, # 0. Similarly, the coefficient of the product 
Y s ' X s 2  . . .  Y s m ( X s m )  is written as Cy(sI ,  . . . ,  s,) and is given by C y  = (-1)"-'Cx, where 
n = si. The second result we need is Goldberg's theorem 3 which provides for the 
coefficients of the product XPYq the remarkable formula: 

Let us specialise now for terms of the form X"-kYXk where n > 0 . When k = 0 
and k = n we can use (A6) to obtain 

On the other hand, on account of the recurrence relation (A5) for Gk(t) ,  repeated 
partial integration applied to (A4) leads to (here we assume n 2 2) 

Thus, collecting all these terms with n fixed in the power series of Z one finds 

B "  
n .  

k=O 

The sum in the preceding formula is easily recognised as the expanded form of the 
multiple commutator i " Y  defined in (A3). The proof is given by induction. For n = 0 
and n = 1 the result is trivial. Assume now that the sum in (A9) equals 9 " Y  for some 
n > 1 .  From (A3) it then follows 

i n + I  Y = [X, in Y ]  

= X"+l Y + & - l ) k  [ (3 + ( )] X"+'-kYXk + ( - l )n+'  YX"+' 
k -  1 

& = I  

Taking into accoilnt the relation 

completes the proof. To summarise, we see again that to first order in Y the general 
BCH formula can be written as 

B 
n !  

X 

z = x + C ( - l ) " - j x " , Y j + O ( Y * )  
n=O 
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or in the more compact form 

For the reader's convenience we recall here another important formula relating to 
exponential operators. This is [8] 

2 1 A  
ex ye-' = 1 $ X " Y  =e' Y .  

fl=O 

The result is expressed again in terms of multiple commutators defined via the adjoint 
operator. 
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